## The Case For A Large FOV Imager

Need to observe extended objects, such as: clusters of galaxies galaxies supernova remnants star clusters

The field of view is rather modest for the quantum calorimeter (2.5-5'), but we can get a larger field of view, with CCDs in the zero order image, without paying much of a price.

Here's an example of some science, likely to be relevant, that requires a decent FOV.

For a  $\Omega_{tot} = 1$  cosmology, where  $\Omega_{\Lambda} + \Omega_{M} = 1$  distances go as

$$d_{L} \propto (1+z)H_{o} \int dz /(\Omega_{M} (1+z)^{3} + \Omega_{\Lambda} (1+z)^{3(1+w)})^{\frac{1}{2}}$$

w is the quintessence parameter

We already know that -1.5 < w < -0.5, although w < -1 doesn't make much sense, so it's in the range -1 < w < -0.5, and the  $1\sigma$  values are more like -1 < w < -0.8 (w = -1 is a Cosmological constant)

For example, for w = -1,  $\Omega_{\rm M} = 0.3$ ,  $\Omega_{\Lambda} = 0.7$ , the denominator is dominated by  $\Omega_{\Lambda}$  at z = 0 but by  $\Omega_{\rm M}$  at z = 1, where the denominator has the argument  $(2.4 + 0.7)^{1/2}$ 

(the two terms are equal at z = 0.32)

So if you want to find out something about w, all the action is in the z = 0-1 region, with the  $z \approx 0.5$  region being critical



In the X-ray region, people try to get a handle on cosmological parameters, like w in a few ways with clusters of galaxies:

Volume evolution (number density with z) Constant baryon fraction in clusters (d<sup>3/2</sup>) S-Z Effect

For a cluster of galaxies, you probably want to measure  $n_X$  and  $T_X$  out to 1 Mpc, but you should use a background beyond the tidal radius, typically 2-3 Mpc.

At z = 0.5, 1 Mpc is 3.3' (a radius; 7' diameter), so you need a diameter of 15' or more to get the cluster and the background.

This is 21' for z = 0.25 and 13' for z = 0.75.

Conclusion: It would be VERY helpful to have an instrument with a FOV of 20' or more.

## A Proposal for a Large FOV Camera

- use the zero order image (currently 8' chip at this location)
- tile the image plane (to 30' or so)

Problem: this image will be very soft (1/4 keV)

```
Objects that emit soft X-rays
stars (coronae)
cooling compact objects (naked NS; WD)
clusters of galaxies (at high redshift)
early-type galaxies
galaxy groups (the outer parts)
Local bubble; Group; Galactic Halo
AGNs (soft excess)
ultrasoft sources
```

A further modification to the Zero-Order Image

- keep 20% of the gratings flat (just reflectors)
- improves the energy range of the image
- hardly any impact on the observing time for S/N of spectra

The gratings selected would need to have good image properties at the Zero-order image (on-axis gratings?)